Density dependent Markov chains and their approximations

András Horváth
Università di Torino Italy

Outline

1. Markov chains
2. Density dependent Markov chains (DDMC)
3. Approximations of DDMCs
3.1 Deterministic approximation with ODEs
3.2 Stochastic approximation with SDEs
4. Conclusions

1. Continuous time Markov chains

- discrete state space
- continuous time process, $Z(t)$
- enjoys the Markov property

$$
\begin{aligned}
& \operatorname{Pr}(Z(s+t)=j \mid Z(s)=i,\{Z(u): 0 \leq u<s\})= \\
& \operatorname{Pr}(Z(s+t)=j \mid Z(s)=i)
\end{aligned}
$$

- this memoryless property implies that holding times are exponential

1. Continuous time Markov chains

- a CTMC is usually specified through its infinitesimal generator

$$
Q=\left(\begin{array}{cccccc}
-q_{1} & q_{1,2} & q_{1,3} & & q_{1, n-1} & q_{1, n} \\
q_{2,1} & -q_{2} & q_{2,3} & \ldots & q_{2, n-1} & q_{2, n} \\
q_{3,1} & q_{3,2} & -q_{3} & & q_{3, n-1} & q_{3, n} \\
& & & \ddots & & \\
q_{n-1,1} & q_{n-1,2} & q_{n-1,3} & \ldots & -q_{n-1} & q_{n-1, n} \\
q_{n, 1} & q_{n, 2} & q_{n, 3} & \ldots & q_{n-1, n} & -q_{n}
\end{array}\right)
$$

with

$$
q_{i}=\sum_{j} q_{i, j}
$$

1. $M / M / 1$ queue

- queue fed by Poisson process with exponential server

$$
Q=\left(\begin{array}{cccccc}
-\lambda & \lambda & 0 & \cdots & & \\
\mu & -\lambda-\mu & \lambda & 0 & \ldots & \\
0 & \mu & -\lambda-\mu & \lambda & 0 & \cdots \\
& & & \ddots & & \\
& & & 0 & \mu & -\lambda-\mu \\
& \cdots & \cdots & 0 & \mu & -\mu
\end{array}\right)
$$

1. Analysis of CTMCs

- two ways of thinking what happens in a CTMC:
- first choose sojourn time according to q_{i} and then the next state according to $q_{i, j} / q_{i}$
- generate exponential random variables according to $q_{i, j}$ and then select the smallest of them to specify the next state
- transient probabilities calculated through matrix exponential

$$
P(t)=[\operatorname{Pr}(X(t)=j \mid X(0)=i)]=e^{t Q}=\sum_{n=0}^{\infty} \frac{Q^{n} t^{n}}{n!}
$$

- steady state by linear system

$$
\pi Q=0, \quad \sum_{i} \pi_{i}=1
$$

1. Randomization

- several ways of calculating matrix exponential: Moler, C. and C. Van Loan. 2003. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review 45, 3V49.
- randomization is best suited to CTMCs

$$
P(t)=\sum_{n=0}^{\infty}(I+Q / q)^{n} \frac{e^{-q t}(q t)^{n}}{n!}
$$

with $q>\max _{i} q_{i}$

2. Density dependent Markov chains

- we consider the class of density dependent Markov chains
- describe the interaction of groups of identical objects
- informally: the intensities of the interactions can be expressed as a function of the density of the objects present in the considered area or volume
- (instead of expressed as a function of the number of objects itself)

2. Density dependent Markov chains

- formally a sequence of density dependent Markov chains is:
- indexed by a parameter, denoted by N (area or volume or total number of objects)
- has state space $\mathcal{S}^{[N]} \subseteq \mathbb{Z}^{k}$ (k groups of identical objects)
- the transition intensities are in the form:

$$
q_{r, r+m}^{[N]}=N f\left(\frac{r}{N}, m\right)
$$

- by relaxing the above form we obtain the class of nearly density dependent Markov chains with transition intensities in the form

$$
q_{r, r+m}^{[N]}=N f\left(\frac{r}{N}, m\right)+N g(r / N, m, N)
$$

with $g(r / N, m, N) \in O(1 / N)$

2. Example

- epidemic model with susceptible (S) and infected (I) individuals distributed over an area split into N equally sized cells
- a state is a pair (i, j)
- three kinds of transitions:
- 1. susceptible individuals grows:

$$
\emptyset \rightarrow S
$$

with intensity

$$
q_{(i, j),(i+1, j)}^{[N]}=N \lambda_{1}
$$

because the larger the area the higher the intensity

2. Example

- three kinds of transitions:
- 2. one susceptible individual becomes infected:

$$
S+2 I \rightarrow 3 I
$$

with intensity

$$
\begin{aligned}
q_{(i, j),(i-1, j+1)}^{[N]}= & \frac{i j(j-1)}{2} \frac{1}{N^{3}} N \lambda_{2}= \\
& N\left(\frac{\lambda_{2}}{2} \frac{i}{N}\left(\frac{j}{N}\right)^{2}\right)-N\left(\frac{1}{N} \frac{\lambda_{2}}{2} \frac{i}{N} \frac{j}{N}\right)
\end{aligned}
$$

because

$$
\frac{i j(j-1)}{2} \frac{1}{N^{3}}
$$

is the probability that one S and 21 meet in a given cell

2. Example

- three kinds of transitions:
- 3. infected individuals can become immune:

$$
I \rightarrow \emptyset
$$

with intensity

$$
q_{(i, j),(i, j-1)}^{[N]}=j \lambda_{3}=q_{(i, j),(i, j-1)}^{[N]}=N \lambda_{3} \frac{j}{N}
$$

because every I individually gets immune with intensity λ_{3}

3. Fluid approximation

- the considered approximations are fluid
- in order to compare models with different values of N we work with the density process:

$$
Z^{[N]}(t)=X^{[N]}(t) / N
$$

3.1 Deterministic approximation

- if the initial state that tends to z_{0} as N tends to infinity:

$$
\lim _{N \rightarrow \infty} Z^{[N]}(0)=z_{0}
$$

- then the density process tends to the solution of

$$
d z(t)=\sum_{l \in C} I f(z(t), I) d t, \quad z(0)=z_{0}
$$

3.1 Deterministic approximation

- difference between the deterministic approximation and the original stochastic behavior is characterized by

$$
\sup _{t \leq T}\left|Z^{[N]}(t)-z(t)\right|=O(1 / \sqrt{N}) \text { a.s. }
$$

i.e., the error of the deterministic approximation decreases as $1 / \sqrt{N}$

- for any ϵ there exists M_{ϵ} such that

$$
P\left(\frac{\sup _{t \leq T}\left|Z^{[N]}(t)-z(t)\right|}{1 / \sqrt{N}}>M_{\epsilon}\right)<\epsilon
$$

3.1 Deterministic approximation

- the deterministic approximation provides a single trajectory
- usually considered as the approximate mean
- important characteristics, like significant variance or bimodality or non-deterministic cycle times, can be lost
- these can be present even with very large values of N

3.1 Lotka-Volterra predator-prey reactions

- models predator pray interactions:

$$
X \rightarrow 2 X, X+Y \rightarrow 2 Y, Y \rightarrow \emptyset
$$

with initial state

$$
(N, N)
$$

and intensities

$$
(10,20 / N, 10)
$$

- accordingly the density process starts from $(1,1)$

3.1 Lotka-Volterra predator-prey reactions

With the previous parameters the deterministic approximation oscillates regularly forever:

3.1 Lotka-Volterra predator-prey reactions

Compared to $N=50$:

3.1 Lotka-Volterra predator-prey reactions

Compared to $N=100$:

3.1 Lotka-Volterra predator-prey reactions

Compared to $N=500$:

3.1 Lotka-Volterra predator-prey reactions

Compared to $N=2000$:

3.1 Lotka-Volterra predator-prey reactions

Distribution of the largest difference between the ODE and the original behaviour with $N=100,200,1000,2000$:

3.1 Lotka-Volterra predator-prey reactions

Mean error as function of N and its best least square $1 / \sqrt{N}$ fit:

3.1 Lotka-Volterra predator-prey reactions

M_{ϵ} in function of N for which

$$
P\left(\frac{\sup _{t \leq T}\left|Z^{[N]}(t)-z(t)\right|}{1 / \sqrt{N}}>M_{\epsilon}\right)=\epsilon
$$

for $\epsilon=0.05,0.1,0.15,0.2,0.25$:

3.2 Stochastic approximation with SDEs

- approximation with stochastic differential equations:
$d Y^{[N]}(t)=\sum_{l \in C} I f\left(Y^{[N]}(t), l\right) d t+\sum_{l \in C} \frac{l}{\sqrt{N}} \sqrt{f\left(Y^{[N]}(t), l\right)} d W_{l}(t)$
where $W_{l}(t)$ with $I \in C$ are independent standard one-dimensional Brownian motions
- maintains stochasticity: provides distributions
- explicitly uses N (in case of the deterministic approximation $N=\infty$)
- has better convergence:

$$
\sup _{t \leq T}\left|Z^{[N]}(t)-Y^{[N]}(t)\right|=O(\log N / N) \text { a.s. }
$$

for corresponding pairs of trajectories

3.2 Lotka-Volterra predator-prey reactions

Trajectories with $N=50$:

3.2 Lotka-Volterra predator-prey reactions

Trajectories with $N=200$:

3.2 Lotka-Volterra predator-prey reactions

Trajectories with $N=500$:

3.2 Lotka-Volterra predator-prey reactions

Trajectories with $N=2000$:

3.2 Lotka-Volterra predator-prey reactions

Pmf with $N=200,500,1000,2000$:

3.2 Lotka-Volterra predator-prey reactions

Difference in the mean as function of N :

4. Conclusions

- exact simulation of CTMC becomes slower with increasing N
- for fixed step size, simulation of SDE becomes more accurate as N increases
- ranges of N :
- small N : use an analytical approach (randomization)
- larger N : simulate the Markov chain
- even larger N but still important stochastic behavior: use diffusion approximation
- huge N, no stochasticity: use deterministic approximation

