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1. Continuous time Markov chains

I discrete state space
I continuous time process, Z (t)
I enjoys the Markov property

Pr(Z (s + t) = j |Z (s) = i , {Z (u) : 0 ≤ u < s}) =
Pr(Z (s + t) = j |Z (s) = i)

I this memoryless property implies that holding times
are exponential



1. Continuous time Markov chains

I a CTMC is usually specified through its infinitesimal
generator

Q =



−q1 q1,2 q1,3 q1,n−1 q1,n

q2,1 −q2 q2,3 . . . q2,n−1 q2,n

q3,1 q3,2 −q3 q3,n−1 q3,n
. . .

qn−1,1 qn−1,2 qn−1,3 . . . −qn−1 qn−1,n

qn,1 qn,2 qn,3 . . . qn−1,n −qn


with

qi =
∑

j

qi,j



1. M/M/1 queue

I queue fed by Poisson process with exponential server

Q =



−λ λ 0 . . .
µ −λ− µ λ 0 . . .
0 µ −λ− µ λ 0 . . .

. . .

. . . 0 µ −λ− µ λ
. . . 0 µ −µ





1. Analysis of CTMCs

I two ways of thinking what happens in a CTMC:
I first choose sojourn time according to qi and then the

next state according to qi,j/qi
I generate exponential random variables according to

qi,j and then select the smallest of them to specify the
next state

I transient probabilities calculated through matrix
exponential

P(t) = [Pr(X (t) = j |X (0) = i)] = etQ =
∞∑

n=0

Qntn

n!

I steady state by linear system

πQ = 0,
∑

i

πi = 1



1. Randomization

I several ways of calculating matrix exponential:
Moler, C. and C. Van Loan. 2003. Nineteen dubious
ways to compute the exponential of a matrix,
twenty-five years later. SIAM Review 45, 3V49.

I randomization is best suited to CTMCs

P(t) =
∞∑

n=0

(I + Q/q)n e−qt(qt)n

n!

with q > maxiqi



2. Density dependent Markov chains

I we consider the class of density dependent Markov
chains

I describe the interaction of groups of identical
objects

I informally: the intensities of the interactions can be
expressed as a function of the density of the
objects present in the considered area or volume

I (instead of expressed as a function of the number of
objects itself)



2. Density dependent Markov chains

I formally a sequence of density dependent Markov
chains is:

I indexed by a parameter, denoted by N (area or
volume or total number of objects)

I has state space S [N] ⊆ Zk (k groups of identical
objects)

I the transition intensities are in the form:

q[N]
r ,r+m = N f

( r
N
,m
)

I by relaxing the above form we obtain the class of
nearly density dependent Markov chains with
transition intensities in the form

q[N]
r ,r+m = N f

( r
N
,m
)
+ N g (r/N,m,N)

with g(r/N,m,N) ∈ O (1/N)



2. Example

I epidemic model with susceptible (S) and infected (I)
individuals distributed over an area split into N
equally sized cells

I a state is a pair (i , j)
I three kinds of transitions:

I 1. susceptible individuals grows:

∅ → S

with intensity
q[N]
(i,j),(i+1,j) = Nλ1

because the larger the area the higher the intensity



2. Example

I three kinds of transitions:
I 2. one susceptible individual becomes infected:

S + 2I → 3I

with intensity

q[N]
(i,j),(i−1,j+1) =

ij(j − 1)
2

1
N3 Nλ2 =

N

(
λ2

2
i
N

(
j
N

)2
)
− N

(
1
N
λ2

2
i
N

j
N

)
because

ij(j − 1)
2

1
N3

is the probability that one S and 2I meet in a given cell



2. Example

I three kinds of transitions:
I 3. infected individuals can become immune:

I → ∅

with intensity

q[N]
(i,j),(i,j−1) = jλ3 = q[N]

(i,j),(i,j−1) = Nλ3
j
N

because every I individually gets immune with
intensity λ3



3. Fluid approximation

I the considered approximations are fluid
I in order to compare models with different values of N

we work with the density process:

Z [N](t) = X [N](t)/N



3.1 Deterministic approximation

I if the initial state that tends to z0 as N tends to infinity:

lim
N→∞

Z [N](0) = z0

I then the density process tends to the solution of

dz(t) =
∑
l∈C

l f (z(t), l)dt , z(0) = z0



3.1 Deterministic approximation

I difference between the deterministic approximation
and the original stochastic behavior is characterized
by

sup
t≤T

∣∣Z [N](t)− z(t)
∣∣ = O

(
1/
√

N
)

a.s.

i.e., the error of the deterministic approximation
decreases as 1/

√
N

I for any ε there exists Mε such that

P

(
supt≤T

∣∣Z [N](t)− z(t)
∣∣

1/
√

N
> Mε

)
< ε



3.1 Deterministic approximation

I the deterministic approximation provides a single
trajectory

I usually considered as the approximate mean
I important characteristics, like significant variance or

bimodality or non-deterministic cycle times, can be
lost

I these can be present even with very large values of N



3.1 Lotka-Volterra predator-prey reactions

I models predator pray interactions:

X → 2X ,X + Y → 2Y ,Y → ∅

with initial state
(N,N)

and intensities
(10,20/N,10)

I accordingly the density process starts from (1,1)



3.1 Lotka-Volterra predator-prey reactions

With the previous parameters the deterministic
approximation oscillates regularly forever:
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3.1 Lotka-Volterra predator-prey reactions

Compared to N = 50:
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3.1 Lotka-Volterra predator-prey reactions

Compared to N = 100:
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3.1 Lotka-Volterra predator-prey reactions

Compared to N = 500:

0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

1.2

0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

1.2

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5



3.1 Lotka-Volterra predator-prey reactions

Compared to N = 2000:
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3.1 Lotka-Volterra predator-prey reactions

Distribution of the largest difference between the ODE
and the original behaviour with N = 100,200,1000,2000:
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3.1 Lotka-Volterra predator-prey reactions

Mean error as function of N and its best least square
1/
√

N fit:
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3.1 Lotka-Volterra predator-prey reactions

Mε in function of N for which

P

(
supt≤T

∣∣Z [N](t)− z(t)
∣∣

1/
√

N
> Mε

)
= ε

for ε = 0.05,0.1,0.15,0.2,0.25:
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3.2 Stochastic approximation with SDEs

I approximation with stochastic differential equations:

dY [N](t) =
∑
l∈C

l f
(
Y [N](t), l

)
dt+

∑
l∈C

l√
N

√
f (Y [N](t), l) dWl(t)

where Wl(t) with l ∈ C are independent standard
one-dimensional Brownian motions

I maintains stochasticity: provides distributions
I explicitly uses N (in case of the deterministic

approximation N =∞)
I has better convergence:

sup
t≤T

∣∣Z [N](t)− Y [N](t)
∣∣ = O (log N/N) a.s.

for corresponding pairs of trajectories



3.2 Lotka-Volterra predator-prey reactions

Trajectories with N = 50:
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3.2 Lotka-Volterra predator-prey reactions

Trajectories with N = 200:
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3.2 Lotka-Volterra predator-prey reactions

Trajectories with N = 500:
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3.2 Lotka-Volterra predator-prey reactions

Trajectories with N = 2000:
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3.2 Lotka-Volterra predator-prey reactions

Pmf with N = 200,500,1000,2000:
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3.2 Lotka-Volterra predator-prey reactions

Difference in the mean as function of N:
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4. Conclusions

I exact simulation of CTMC becomes slower with
increasing N

I for fixed step size, simulation of SDE becomes more
accurate as N increases

I ranges of N:
I small N: use an analytical approach (randomization)
I larger N: simulate the Markov chain
I even larger N but still important stochastic

behavior: use diffusion approximation
I huge N, no stochasticity: use deterministic

approximation
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